A Symmetry Preserving Algorithm for Matrix Scaling

نویسندگان

  • Philip A. Knight
  • Daniel Ruiz
  • Bora Uçar
چکیده

We present an iterative algorithm which asymptotically scales the ∞-norm of each row and each column of a matrix to one. This scaling algorithm preserves symmetry of the original matrix and shows fast linear convergence with an asymptotic rate of 1/2. We discuss extensions of the algorithm to the one-norm, and by inference to other norms. For the 1-norm case, we show again that convergence is linear, with the rate dependent on the spectrum of the scaled matrix. We demonstrate experimentally that the scaling algorithm improves the conditioning of the matrix and that it helps direct solvers by reducing the need for pivoting. In particular, for symmetric matrices the theoretical and experimental results highlight the potential of the proposed algorithm over existing alternatives. Key-words: Sparse matrices, matrix scaling, equilibration in ria -0 05 69 25 0, v er si on 2 13 N ov 2 01 2 Un algorithme pour mettre des matrices à l’échelle tout en préservant la symétrie Résumé : Nous décrivons un algorithme itératif qui, asymptotiquement, met une matrice à l’échelle de telle sorte que chaque ligne et chaque colonne est de taille 1 dans la norme infini. Cet algorithme préserve la symétrie. De plus, il converge assez rapidement avec un taux asymptotique de 1/2. Nous discutons la généralisation de l’algorithme à la norme 1 et, par inférence, à d’autres normes. Pour le cas de la norme 1, nous établissons que l’algorithme converge avec un taux linéaire. Nous démontrons expérimentalement que notre algorithme améliore le conditionnement de la matrice et qu’il aide les méthodes directes de résolution en réduisant le pivotage. Particulièrement pour des matrices symétriques, nos résultats théoriques et que expérimentaux mettent en valeur l’intérêt de notre algorithme par rapport aux algorithmes existants. Mots-clés : Matrices creuses, mise à l’échelle, factorisation des matrices creuses. in ria -0 05 69 25 0, v er si on 2 13 N ov 2 01 2 Symmetric Matrix Scaling 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploitation of RT information in static property checking algorithms

This document describes an approach for preserving the RTL structure of designs and properties to be exploited in property checking algorithms. Two approaches, for preprocessing such problems are considered, namely symmetry reduction and date path scaling, and the effects are outlined.

متن کامل

A new approach for Robot selection in manufacturing using the ellipsoid algorithm

The choice of suitable robots in manufacturing, to improve product quality and to increase productivity, is a complicated decision due to the increase in robot manufacturers and configurations. In this article, a novel approach is proposed to choose among alternatives, differently assessed by decision makers on different criteria, to make the final evaluation for decision-making. The approach i...

متن کامل

Higher - Dimensional Discrete Smith Curvelet Transform : a Parallel Algorithm

We revisit Smith’s frame of curvelets and discretize it making use of the USFFT as developed by Dutt and Roklin, and Beylkin. In the discretization, we directly approximate the underlying dyadic parabolic decomposition, its (rotational) symmetry, and approximate all the necessary decay estimates in phase space with arbitrary accuracy. Numerically, our transform is unitary. Moreover, if we apply...

متن کامل

Matrix Balancing Problem and Binary Ahp

A matrix balancing problem and an eigenvalue problem are transformed into two minimumnorm point problems whose difference is only a norm. The matrix balancing problem is solved by scaling algorithms that are as simple as the power method of the eigenvalue problem. This study gives a proof of global convergence for scaling algorithms and applies the algorithm to Analytic Hierarchy process (AHP),...

متن کامل

Scaling and Fractal Concepts in Saturated Hydraulic Conductivity: Comparison of Some Models

Measurement of soil saturated hydraulic conductivity, Ks, is normally affected by flow patterns such as macro pore; however, most current techniques do  not differentiate flow types, causing major problems in describing water and chemical flows within the soil matrix. This study compares eight models for scaling Ks and predicted matrix and macro pore Ks, using a database composed of 50 datasets...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2014